
Explore, Clean and Integrate Data
with OpenRefine

This is a worksheet with exercises for self-learners and students.

1. Overview

Goals and Objectives
This worksheet shows how you can use OpenRefine, which is a desktop tool for data pre-processing
without programming. A lot of ways to deal with heterogeneous data are discussed. With data pre-
processing we mean exploring, cleaning, integrating and enriching data.

The exercise part consists of some tasks that involve real-life examples of dealing with
heterogeneous data and will try to show you what kind of approach we (as users) should be using
when faced with potential messy data.

After completing this worksheet, you will be able to:

• Understand OpenRefine.

• Use OpenRefine to explore data.

• Understand the challenges that heterogeneous data can pose and use OpenRefine to clean data.

• Use OpenRefine to integrate and merge two datasets.

• Use OpenRefine to enrich data using a geocoding service.

• Use OpenRefine to access structured data using web scraping.

Time Required
The time required to complete this worksheet is about one hour for the reading part (without
exercises), plus about five quarters of an hour for the exercises part—both depending on your
previous knowledge and skills.

Prerequisites
In order to complete this worksheet, you need the following prerequisites:

• Hardware: At least 1 GB of free RAM available.

• Internet access (for software and data download and for the advanced chapters and exercises

1

about services).

• Software: OpenRefine (available for Windows, Mac, Linux), installed as instructed below.

• Data: As denoted below.

• Basic understanding of how to work with data

• Basic knowledge of data types

• Basics in SQL

Installation of OpenRefine
In order to do the exercises, you need to have OpenRefine installed locally on your computer. If you
are working on a Linux system you are required to install the Java JRE. Windows user can use the
Windows kit with embedded Java. There is also a Mac kit which you can use right out of the box.
Tested browsers are Firefox, Chrome and Safari; the browsers Internet Explorer and Edge are not
supported. The installation instructions are located in OpenRefine’s installation section of the
manual. Follow the instructions there.

If you’re having problems installing OpenRefine or an issue in general with
OpenRefine, read first the FAQ in the manual, then follow the tips in the manual.
See also this help page.

2. Introduction

Structure of this Worksheet
• In the next chapter, the basics of Data Integration and Data Enrichment will be explained.

• In chapters 3 and 4 we will explain the basics and functionality of OpenRefine.

• In chapter 5 we will be explaining what geocoding is and how it is done using OpenRefine.

• In chapter 6 we will scrape a Wikipedia web page using OpenRefine.

• The goal of the exercises in chapter 4, 5 and 6 is to strengthen the OpenRefine usage skills by
going through a whole workflow using OpenRefine.

Data Integration and Data Enrichment
Data can be structured or unstructured. With structured data we mean data modeled in attributes
having data types. An address list (encoded in a CSV file) typically represents structured data.
Unstructured data is data stored in a plain text, like a novel. With this kind of data it’s impossible to
produce for example a serial letter. But even if the data is structured, it can contain heterogeneous
and potential messy data. With potential messy data, we mean data with many missing data values
and data with has wrong format or wrong structure - at least for our objective.

Data integration is the process of combining data from different sources into a single, unified view.
The integration process begins with an import, and includes steps such as cleaning, schema

2

https://github.com/OpenRefine/OpenRefine/releases/download/3.4.1/openrefine-win-with-java-3.4.1.zip
https://github.com/OpenRefine/OpenRefine/releases/download/3.4.1/openrefine-mac-3.4.1.dmg
https://docs.openrefine.org/manual/installing
https://docs.openrefine.org/manual/installing
https://github.com/OpenRefine/OpenRefine/wiki/FAQ
https://docs.openrefine.org/manual/troubleshooting
https://librarycarpentry.org/lc-open-refine/setup.html

mapping, and transformation. OpenRefine offers many features that are convenient for data
integration (Chapters 3 and 4).

A typical integration process is when two address lists from different, independent sources are to be
merged. We will practice this process in a task (more on this in Chapter 4).

Data enrichment is a term that applies to the process of enhancing and completing existing data.
This can be done in different ways, like merging third-party data from an external source. Let’s say
you have some customer or friends data containing names and postal addresses. An example of this
would be adding coordinates based on postal addresses. This process is called geocoding and allows
addresses to be displayed on a map (more on this in Chapter 5).

Search engines use crawlers (or bots) to scrape the web. Web scraping is the process of extracting
data/content from a website for analysis or other use. It involves reading the HTML file of a website
and filtering it for data. An example of this occurs later as a task (see Chapter 6 Web scraping).

OpenRefine Basics
OpenRefine is an application tool that runs locally as a stand-alone application on your computer and
uses a web browser as graphical user interface (GUI). It’s written in Java and available as open-source
and has it’s roots in managing a knowledge base, like Wikidata. By the way, there are also open
source alternatives like Workbench, which follows a similar concept but is written in Python.

OpenRefine reads and manages large amounts of tabular data, which is usually cluttered and
unstructured. It doesn’t require Internet access for most of its functions, since it runs locally. This
means that your work environment with OpenRefine is private, since everything is run locally.

Referring to the generic tasks mentioned in chapter 2, these are the things OpenRefine can do:

• Explore the data, e.g. faceting and clustering.

• Clean potential messy data, e.g. unstructured (or semi-structured) text files.

• Data transformation - Bulk transformation of data, e.g. data normalization, data formatting.

• Data validation and deduplication.

• Data reconciliation with external services, such as Wikidata.

• Accessing web site data.

OpenRefine is a desktop application implemented as a client-server, with a browser
as client. The principle of OpenRefine is that data is read from a source (file, service,
database) and stored locally as a copy - i.e. as its own OpenRefine project.

The Graphical User Interface (GUI)
OpenRefine offers an interactive Graphical User Interface (GUI) that visualizes each step of working
with your data set. It consists of a main grid (or spreadsheet) with the tabular data you are currently
working on.

3

https://www.wikidata.org/
https://workbenchdata.com/

This spreadsheet changes every time you perform an action such as filtering or creating different
facets. The left part of the GUI has a tab for showing each facet/filter that is currently affecting your
data set. This section offers the possibility of quickly changing facets and filters. Every time you
perform such an action, the spreadsheet reflects the changes.

This spreadsheet changes every time you perform an action such as filtering or creating different
facets. The left part of the user interface contains a tab that displays each facet/filter that is currently
affecting your dataset. This section provides the possibility to quickly change facets and filters. Each
time you perform such an action, the changes are displayed in the spreadsheet.

Figure 1. The OpenRefine GUI.

These are some important terms used in OpenRefine: Since OpenRefine uses a
tabular data model, there are columns (similar terms: field, attributes, cells) and
rows (similar terms: records, lines). Then there’s reconciliation (similar terms:
integration, conflation), the process of matching your dataset with that of an
external source.

OpenRefine also has a powerful Undo / Redo - or history - feature which is a strong safety measure
that allows you to work freely and experiment with your data as much as you want. Each action that
you perform on the data set is tracked by OpenRefine, allowing you to comfortably make any
transformations you want to do on your data set, with the possibility of quickly reverting those
changes. However there are a few operations such as transformations on a single cell level that can’t
be exported as JSON.

4

Figure 2. Undo/Redo feature of OpenRefine.

You can also extract all the project steps made or even apply a change set using a simple JSON file.

On the left of each row on your dataset is a flag and a star icon. Marking them persists even if you
close/open your project and the idea of using these is marking your rows as starred or flagged for
focusing later on them.

You can add stars/flags to your rows individually or you can apply them to all of the matching rows
by using the special column All. Faceting (something you will learn later on in the worksheet) by
stars/flags isalso possible.

5

Figure 3. The flag and star icon located on the left of each row of your dataset.

Projects
An OpenRefine Project is a workspace for your dataset within OpenRefine. It is created by importing
some existing data into OpenRefine. First, import your data (in various ways), then configure the
parsing options and proceed to create the project. Once you create the project, the data will be saved
in a different file than your original source (in the said workspace of OpenRefine) and you won’t have
to worry about accidentally changing your original data.

OpenRefine stores a project into a separate directory after you create the project
and doesn’t ever modify your original file. For more information on how OpenRefine
handles projects and on their storage, check out this documentation.

Exploring data within OpenRefine helps you learn more about your dataset. Typical questions while
exploring are:

• Which attributes are text, discrete and which are continuous?

• What kind of values does each attribute have?

• How are the values distributed?

In OpenRefine there are different ways to display the data. Basically one
distinguishes between Rows and Records. More information about this can be
found on the OpenRefine documentation.

6

https://docs.openrefine.org/manual/installing
https://docs.openrefine.org/manual/exploring#rows-vs-records

OpenRefine assigns a data type to each cell in the dataset, where some of the cells have a dedicated
data type found by OpenRefine and others do not (they are initially set to String). Each data type has
specific functions you can perform with it, but not necessarily with others, and many data types can
be converted to other data types (if necessary).

Note that each cell is assigned its own data type. In this point OpenRefine is more
similar to Excel than to a database, because in OpenRefine not all cells of a column
necessarily have the same data type - although this is indispensable with regard to
evaluations (and database tables). The solution for this is provided by the
OpenRefine functions (so-called "facets"), which are described and practiced in the
following.

OpenRefine Functionality
In this section, we will be first describe OpenRefine’s reader/input and explore its functions. Then,
transformation functions are presented. Finally, we will be describing how exportation of data is
handled in OpenRefine.

OpenRefine’s most valuable functions are explorations - facets which allow to quickly explore the
values of a given column - and transformations which offer many options to manipulate the data.
Understanding these features is key to understanding the whole lifecycle of an OpenRefine project
and will also come in handy in the worksheet exercises.

Importing and Exploring Data

OpenRefine first imports a file from your computer or from the Internet and then creates a project
from it. After data cleaning/manipulation, you can then export the data to a specific file format and
use it.

Importing

Importing is the first step when working with OpenRefine. The following formats are supported for
importing in OpenRefine: CSV, TSV, JSON, XML, Microsoft Excel spreadsheets (.xslx, .xls), HTML tables
(.html), Google Spreadsheets (online).

OpenRefine also offers the possibility of importing data from an existing database
source.

Facets

After you open an unknown data source, one of the first things you do is explore it. So you want to
"see" the data content and also determine the data types of the columns. Data types are important
because they allow for various operations. Some basic data types are text, number, date/time,
boolean (true/false) and enumeration (e.g. red, yellow, green).

Data types are important. Programs like Superset/Tableau/PowerBI and even MS
Excel have built-in functions to guess the type. In OpenRefine you will find the

7

option [ Parse cell text into numbers, dates, … ] when importing a CSV.

Facets are an important feature of OpenRefine that go beyond spreadsheets and traditional
database tools. They show the data variance in a particular column. Faceting allows us to get a better
picture of the entire data set and view the data from a broader perspective.

A facet groups values (e.g. of text or numeric data type) that are in a column and allows the user to
filter and edit the values in different cells simultaneously, which works like a browsing mechanism.

Typically, facets are created for a particular column by clicking on the column, selecting the Facet
option, and then clicking on one of the facet alternatives.

For example, if you select [ text facet ], the entire contents of the column cells are compared to
display general information about the values in that column. You can then either manually enter a
new value for the facet entry or use the OpenRefine clustering option, which will automatically take
care of the facet.

Figure 4. Example of a numeric facet on numeric type "customer_id".

Filtering

You can also filter specific column values in the data set by choosing the [ Text Filter ] option in the
column dropdown menu. This creates a text box where you can insert the text you want to filter the
column values.

8

Figure 5. Example of a text filter on the Lastname column.

Clustering

Clustering is another important feature for grouping similar data which helps you identify data
inconsistencies and misspellings. This is common in many data sets.

Clustering can be done by choosing a Facet on the column you want to cluster and then choosing the
method you want to cluster your column values with.

Figure 6. Finding the Cluster button on a Text Facet

9

Figure 7. Example of using the nearest neighbor clustering method.

As you can see in the above image, this is an example for the Zurich city where the city’s name was
purposefully misspelled a couple of times. The clustering function finds those misspellings and offers
us options on how to treat these types of misspellings.

 You can find out more about clustering in this OpenRefine documentation page

Transforming
OpenRefine offers some powerful features/functions for working with data. Some transformation
functions include, among others:

• At value level:

◦ String operations

• At field/column level:

◦ Split and join multi-value cells

◦ Calculations in fields

◦ Adding constants

◦ Joining (concatenating) fields

There are also other OpenRefine functions that can transform your whole data set (bulk edit) with
only a few clicks, such as:

• Re-ordering columns:

◦ Single re-order - Located on the dropdown of the column › Edit Column › Move column to

10

https://docs.openrefine.org/manual/cellediting

[direction]

◦ Multi re-order - Located on the dropdown of the All › Edit Column › Re-order / remove
columns…

• Re-naming columns:

◦ Located on the dropdown of the column › Edit Column › Rename this column

• Sorting data:

◦ Located on the dropdown of the column [ Sort… ], after that you have to choose the data type
of the column values.

String Operations and Functions

OpenRefine provides some fast transformation operations that are useful when dealing with data.
You can either use one of the preset transformations (ready to use) or use the GREL language to
implement your own transformation function (requires light programming skills; see the separate
chapter below).

Some of string operations include:

• Replacing quotes (common in potential messy data)

• Transforming text to other different data types

• Trimming whitespaces or other special characters

• Escaping/unescaping HTML characters

When using these operations correctly, one can quickly turn potential messy data into clean and
machine-readable information.

Using String Operations on OpenRefine can be done by clicking the Edit Cells option on the column
dropdown menu. When using string operations, you can choose one of the preset transformations
offered by OpenRefine or write your own using the OpenRefine’s GREL language, e.g. value.toDate()
expression (see section below).

Splitting Fields

Another key feature of OpenRefine is the Split functionality that is useful for splitting column values
into multiple columns. All you have to do is specify the character in-between the words and then
OpenRefine will split those strings into multiple columns for you. This is very common when working
with messy data, a lot of data within one column makes much more sense if split into multiple
columns.

Splitting fields in OpenRefine is done by clicking on [ Edit Column ] and then [ Split into several
columns… ]. This will let you specify a separator character(s) or a field length for separating your
column values.

You can also split multi-valued cells (with extra options) using the [ Split multi-
valued cells… ] option.

11

Joining Fields

Another option, which is sort of the opposite of splitting fields, is called Join Fields and is used when
we want to join fields with a separator (or without). This is pretty self-explanatory.

The joining of fields in OpenRefine is done by clicking on [ edit column ] and then then [ Join
columns… ]. You can then select the columns you want to join and set the separator between the
contents of each column. You can write the results in the same column or create a new column.

You can also join multi-valued cells (just like splitting above) by using the [ Join
multi-valued cells… ] option.

Joining datasets from different sources

A common scenario when working with data is to obtain data from multiple sources. Even if the
incoming data ultimately serves a common purpose, the structure of the data in the different sources
may not be identical. An example of this would be receiving two customer lists with the same
attributes but different column names, for example. Although from a human point of view it looks as
if they are the same data, this is not the case for computers. Different techniques have to be applied
to integrate or rather "merge" these different sources of similar data.

There are usually three types of cases when joining datasets:

1. Extending the first dataset by another one which mostly has overlapping column names, a.k.a.
extend down vertically

2. Enriching the first dataset by just one or few columns from another auxiliary dataset, a.k.a.
extend down horizontally by one or few columns

3. Extend first dataset and it’s rows by another complementing dataset, similar to the SQL JOIN,
a.k.a. extend horizontally

In cases 1 and 2, a common column called "key" is required. Typical keys are identifiers such as postal
codes, postal addresses (see section Geocoding further down the worksheet), country codes,
municipality codes, ISBN, etc.

Some of the above cases will be applied in exercises 2 and 3. The first case will be applied in exercise
2 and the second case in exercise 3. For the third case, there is no exercise on this worksheet that
demonstrates it. OpenRefine does not currently provide a direct solution for this case.

Validating the Dataset

OpenRefine also offers functions for validating your data against another data set. It can be done by
creating a Custom Text Facet using the GREL cell.cross() function that matches values from two
different columns. There is no native/straight-forward way for validating data sets but it can be
achieved by using functions that behave in the same fashion as the GREL cell.cross() function.

Data Deduplication

For deduplicating the data, one of the ways you can achieve it is for example by using Clustering by

12

key collision to find similar data. Then you can manually assess duplicate data and choose what to do
with them after the clustering process is finished. This is usually a pretty straight-forward and
efficient way of deduplicating a data set.

Exporting

When you are done with working with the data and you have the data in the desired format, the last
step is exporting that data into a specific file format.

The following formats are supported for exporting in OpenRefine: CSV, TSV, HTML table, Microsoft
Excel spreadsheet (.xlsx, .xls), ODF spreadsheet (.ods), and some other custom exporters.

3. Exercises

Exercise 1: A first OpenRefine Workflow
In this exercise, we are going to demonstrate a typical workflow and lifecycle of an OpenRefine
project, from its creation and until the data is ready to be exported.

Data

For this task, the data from the fill address_list_original.xlsx is used.

Step 1: Creating a Project

In order to create a project (the actual workspace where we work with the data), you need to:

1. Open OpenRefine on your local web browser.

2. Choose the file you want to work with (or retrieve it directly from the Web), in our case, choose
the file you just downloaded from the above link.

3. Click on Next.

4. After you have chosen what file to import, you need to configure the parsing options. The
preferred options will automatically be chosen by OpenRefine but you can customize them if you
like (see figure below).

5. Name the project and click on Create Project to create it on OpenRefine and start working on it
(also saved for future use).

13

Figure 8. Project parsing options.

Step 2: Check data

We will refine the data set to filter out only customers from the Zurich canton and merge their
addresses to a new column containing the full address.

1. Create a Text Facet on the Place column for filtering down to only customers living in the ZH
Kanton

2. Merge the Street, Place and ZipCd columns into a new one, separated with the , character
(except the ZipCd column)

3. Add the country entry code to their phone numbers. 3.1 Add +41 as the country code (for
Switzerland) 3.2 Remove the 0 prefix on their phone numbers 3.3 Trim the white spaces from the
phone number (e.g. +41445308197)

One way of doing string manipulation (third step) is by applying the following GREL
expression: value.replace(value, "+41" + value.substring(1)).replace(" ", "").
There are of course multiple ways, but it is encouraged for you to create your own.

Step 3: Exporting the data

After you have finished the above tasks, you can export your data set (project) by clicking on Export ›
Excel 2007+ and OpenRefine will export your current data set into a new Excel spreadsheet.

Exercise 2: Integrating another Dataset
In this exercise we are going integrate a source data set into a given target one. The source dataset
contains similar data like the target one but with different column names and structure. Scenarios
like this are very common in real life where we receive a lot of data sources about practically the
same data. Ultimately, all of these sources of data we receive will need to be integrated/merge into

14

one final data set containing all of the data from all of the sources.

We are going to use different methods and techniques in OpenRefine in order to successfully
integrate (merge) two data sets into one. This will involve splitting/merging fields, mapping different
attributes, deduplicating the data etc.

This exercise also helps in demonstrating the first case (extend down vertically) of the
Joining datasets from different sources chapter that you read earlier in the worksheet.

Data

For this task the data from the files address_list_original.xlsx & address_list_scrambled.xlsx are
used.

Step 1: Creating the project

When you have downloaded both of the excel spreadsheets, create the project by:

• Uploading both of the files as the project files (OpenRefine supports multiple files import).

• Select both of the files in the [ Select Files to Import page ].

• Leave the default parsing options and click on [ Create Project ].

Step 2: Integrating the data

The target dataset is the same as the one from the first exercise and the purpose here is to integrate
another data set i.e. the source dataset (with similar column names and values) into the target dataset
including correct mapping and successful data integration and deduplication.

After creating the project, you will see a new column called File corresponding to the file that the
record belongs to. This column File is also called the key column when merging two datasets
because it is the column we rely upon for differentiating where the data is coming from (see the first
case in the Joining datasets from different sources chapter earlier in the worksheet).

The dataset shows a sum of all rows from both files containing all columns from both files. After the
records from the first file (original/source record) are over, the display of the records from the second
file (encrypted/source record) starts. You will also notice that some columns have the same name (on
purpose) and therefore each record contains data about these columns.

Below are some screenshots that show what the data looks like and how the records evolve from the
first to the second file.

15

Figure 9. Data in the table

Figure 10. Data from the second table

Step 2.1 Joining and standardizing the columns from both files

First, we need to check the column names (from both files) and find out which ones of them belong
to one-another. This part needs to be done manually.

When we find out the two columns corresponding to the same thing, we need to join them together.
This will basically bring all the values from both of the files into a single column. Make sure that you
leave the separator as an empty string when joining the columns.

You will see that in the columns that you joined, the first column will also take the values from the
second column and we will have a value for each of our rows (from both of the files).

16

Figure 11. Joining the Nat and Nationality columns from both of the files.

Now do the same thing for all of the remaining columns and you will have a dataset with consistent
columns.

When you have joined all the right columns, proceed by removing the other columns i.e. from the
second file. This should leave you with a dataset containing all the data from both of the files, but
with consistent and standardized column names. (Some columns can have the same name in both of
the files, this was left on purpose).

Figure 12. Dataset after joining the columns from both of the files.

Step 2.2 Deduplicating the data

The next step is to deduplicate the data. Some data from the second file is also present on the first
file and this means that they are duplicates and we need to remove them and only keep one of the
entries. There is also other data on the second file which is not present on the first file (i.e. not
duplicate) so we shouldn’t remove these.

For a record to be considered duplicate, we will be considering the following condition: If the first
name, last name and birth date are the same, then we are talking about the same person,
i.e. duplicate.

In order to do this, we need to use the Duplicates facet feature which is located under Facet ›
Customized facets › Duplicates facet.

17

Figure 13. Duplicate facets option on OpenRefine.

This facet returns false if the value is not duplicate and true if the value is a duplicate. The idea in our
case is to create three duplicate facets which check for duplicates on the Firstname AND Lastname
AND Date_Birth column.

Go ahead and create three facets for the three columns and select the true value on each one of
them. This will return the columns that are now duplicates on all three values of the selected columns
(our target).

Figure 14. Applying all of the duplicate facets on the dataset.

Now all duplicate records remain, i.e. same first name, same last name and same date of birth. The
next task is to sort the records alphabetically by one of the three columns (e.g. Firstname). After
sorting the column, select [ Sort ] and then [ Reorder rows permanently ]. This is necessary to use
the next function, which hides the duplicate records (except the first one).

18

Figure 15. Sorting by the Firstname column.

Figure 16. Persisting the sorted values.

When you have permanently re-ordered the rows (necessary step), go ahead and select the column

you sorted and click on Edit Cells › Blank down. This will hide all the duplicate records (besides from
the first one), which is exactly what we need.

Now you need to face the lines after spaces. This is a custom OpenRefine facet that you can find at

Facet › Customized Facets › Facet by blank (null or empty string).

19

Figure 17. Facet by blank option on OpenRefine.

For the facet created with the [ facet by blank ] option, select true so that only the duplicate records

(our target) are left. Now click on the All column and select Edit Rows › Remove matching rows. This
will remove all rows from the current selection (the duplicate records).

Remove all facets by clicking on [ Remove All ] and you will have only unique records.

Figure 18. Records after deduplication (and validation).

Step 3: Finishing up

On the Phone column (or Phone_Number) there are some phone numbers with country code and
some without. There’s also spaces on some of the numbers and not on others.

Write a text transform function using GREL on the Phone column that will standardize all it’s column
values. You can do this by either adding the country code to all of them (who don’t have it) or by
removing it from the ones who have it. You also need to remove spaces from the values that have
them, or add spaces to the ones who don’t, it’s up to you.

After you finish this last task, you will have integrated, validated and deduplicated a source dataset
into a target dataset successfully.

20

Step 4: Exporting the data

Export the data into the MS Excel 2007+ (.xslx) format in order to finish this exercise.

4. Enriching Data with Geocoding
Geocoding is the process of converting/transforming a human-readable description of a location,
such as an address or a name of the place in the actual location of it in the world (geospatial data).
Geocoding is an important asset to geospatial data and location analytics. The idea of geocoding is to
input the description of a place and get back the exact location (e.g. longitude and latitude, lat/lon).
Reverse geocoding is another concept (not as widely used) which is the opposite of geocoding,
meaning, inputting the exact location of a place and having the address or place outputted back to
you.

Geocoding can be done through online web applications or web services (APIs). There are several
geocoding APIs that we can use and they usually come with a cost.

In this worksheet, we will be demonstrating geocoding using Nominatim (see Nominatim API, which
relies on the open database OpenStreetMap. This is an example of a Nominatim API call for the
address Obere Bahnhofstrasse 32b, Rapperswil (from the documentation):
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&
format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil.

This results in the following GeoJSON (JSON) document (edited and shortened for demonstration
purposes):

{
 "type": "FeatureCollection",
 "licence": "Data © OpenStreetMap contributors, ODbL 1.0.",
 "features": [{
 "type": "Feature",
 "properties": {
 "osm_id": 3124300001,
 "osm_type": "node",
 "importance": 0.42099999999999993
 },
 "geometry": {
 "type": "Point",
 "coordinates": [8.8190421, 47.2269746]
 }
 }]
}

 You can find more about JSON at www.json.org.

The Nominatim Usage Policy for example states that a maximum of repeated
requests has to be done one per second. This means that you have throttle calls

21

https://nominatim.org/release-docs/develop/api/Overview/
https://www.openstreetmap.org/
https://nominatim.org/release-docs/develop/
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://nominatim.openstreetmap.org/search?format=xml&addressdetails=1&countryCodes=CH&format=geojson&limit=1&q=32b+Obere+Bahnhofstrasse,+Rapperswil
https://www.json.org/json-en.html
https://operations.osmfoundation.org/policies/nominatim/

with a delay to 1000ms.

Exercise 3: Geocoding with OpenRefine
In this part you will use Nominatim as a geocoding service together with OpenRefine. Since our
dataset contains information about the customer’s address and country, geocoding will be applied to
a dataset.

This exercise also helps in demonstrating the second case (extend down horizontally
by one or few columns) of the Joining datasets from different sources chapter that you
read earlier in the worksheet.

Data

For this task, the data from the file address_list_original.xlsx is used.

Step 1: Creating the Project

After you have the right dataset, open the OpenRefine program and create the project using the
dataset you just downloaded.

With OpenRefine we will do the Nominatim API requests, fetch the data, parse the lat/lon out of it,
then put it into the right columns.

Step 2: Joining the address columns

We need to concatenate address columns to one single column Full_Address in order to be ready for
the geocoding call. We can do this using column joins and other functions, as follows:

1. Start by creating a new column which concatenates the Street and Place column. This will give us a
new column which contains the street and the place.

2. Navigate to the Street column, clicking on the dropdown and selecting Edit Column › Join
columns…. This will open a pop-up window where you can specify which columns you want to
join and the way you want to join them.

3. Select the Street and Address columns on the left and specify the , separator between the content
of each column on the right. Also make sure you select the [ Write result in new column
named… ] radio button and specify the name as Full_Address because we want to create a new
column out of these two.

22

Figure 19. Joining/concatenating columns on OpenRefine.

1. Now you will have a new column called Full_Address which contains the address (with number)
and the place part of the address. This will help the geocoding API with determining the location
of the customer’s addresses.

Figure 20. OpenRefine grid after joining the Address + Place columns.

Step 3: Using a Geocoding API with OpenRefine

Now, we have to call a Geocoding API using OpenRefine which will give us more information about
our address, including lat/lon attributes.

1. We have to make a request to the Nominatim API where we will split the Full_Address column
value and send it to the API and in return receive information about that location including the
lat/lon (our objective) of it.

2. Start by clicking on the drop-down button of Full_Address column and select Edit Column › Add
column by fetching URLs….

3. Specify a new name for the column (address_json or osm_json, it doesn’t really matter), change the
throttle delay to 1000ms and write the expression as:
'https://nominatim.openstreetmap.org/search?street=' + escape(value.split(",")[0], 'url') +
'&city=' + escape(value.split(",")[1], 'url') + '&format=json' and click on [ OK ]. This code

23

will split the address column into two values (one contains the city and the other contains the
place) and make an API request for receiving a GeoJSON object with the lat/lon coordinates of the
location (the process of geocoding). We will also receive other information about the location but
we are going to ignore those for now.

Figure 21. Adding a column by fetching an URL (API Call) using GREL.

4. Now you will have a new column containing the API response for the request we made, if you
format/beautify this JSON code, you will see that it contains information about the location
including lat/lon attributes, the bounding box, OpenStreetMap ID/Type etc. as shown above.

Figure 22. OpenRefine grid after the address_json column is added”.

24

please be patient. If you want to complete the process faster, you can use facets to
narrow down the dataset to less records, e.g. by filtering only the records with the
value AG on the Kanton column.

Step 4: Parsing the JSON and creating the coordinate (lat/lon) columns

Now that we have the JSON object containing information about our customer’s locations, we can
use that JSON object to create new columns out of it, such as lat/lon.

In order to do this, we need to:

1. Click on the drop-down of the newly column you just created by calling the API.

2. Click on Edit column › Add column based on this column… (Insert picture here).

3. Specify a name for the new column(e.g. lat or latitude) and use the Expression box to parse the
JSON and read the desired attribute by typing: value.parseJson()[0].lat. You can see the preview
of the column after evaluating the expression. Click [ OK ] and you will see a new column for the
latitude coordinate.

Figure 23. Extracting the latitude attribute from the json object we received.

4. Do the same thing for the longitude coordinate lon.

5. After you have the lat/lon columns, finish up by deleting the column with the full json string for a
cleaner look. You can also remove the Full_Address column if you like, since it’s not necessary
anymore.

Now you have a clean dataset with lat and lon coordinates for the customer addresses retrieved
using OpenRefine and geocoding APIs. There may be some locations that were not found by the API.
In this case, you can use a facet to filter out the empty values, and then manually modify these
addresses to find out what is wrong with them, and then make the API request again.

25

Figure 24. Final look of the dataset after geocoding and cleaning it.

Web scraping
In this section, we are going to do some web scraping using OpenRefine. We can use functions to
first fetch and parse a web page, which consists of HTML text, and then filter the data to the desired
columns.

OpenRefine’s GREL functions allow us to parse the HTML page into HTML text content and then use
different methods for selecting the right tags, attributes, text nodes etc. .

Let’s first explain a typical HTML structure and then what GREL is.

HTML and DOM

HTML is the standard markup language for web pages. It is not a programming language but rather
an markup language which describes the structure of a web page.

Web pages are written in HyperText Markup Language (HTML). HTML is the standard language for
documents designed to be displayed in a web browser.

The Document Object Model (DOM) is the data representation of the elements/objects that
contribute to the content of a HTML document. The DOM plays a crucial part in web scraping since
that can be used to access elements inside a web page (just like the DOM selector methods in
JavaScript).

 You can find more about HTML here and about Javascript DOM here.

General Refine Expression Language (GREL)

A key feature of OpenRefine is the General Refine Expression Language, short GREL. GREL is an
expression language specific to OpenRefine, which is similar to JavaScript and is convenient for
performing different functions such as:

• String operations

• Boolean operators

• Parsing HTML, JSON or XML

• Selecting HTML elements

• Iterating over elements etc.

26

https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/js/js_htmldom_methods.asp

GREL is going to be used in our case to access the HTML DOM and select the appropriate data out of
the HTML page for scraping.

For more information on GREL and its functions, you can read the official
documentation from OpenRefine on these pages: GREL and GREL functions.

Exercise 4: Web scraping with OpenRefine
For this exercise, we are going to

• Bring the HTML content into OpenRefine.

• Parse the HTML and its elements using OpenRefine’s expression language GREL.

• Arrange the resulting columns.

We are going to scrape a Wikipedia page that contains a list of all the castles in the Aargau canton of
Switzerland, like for example the Habsburg! First, we are going to bring the pure HTML content of
that page into OpenRefine and then we are going to use different GREL HTML and text transform
functions to parse out the correct data from the HTML content.

This is the Wikipedia web page we use in this exercise: Liste von Burgen und Schlössern im Kanton
Aargau.

Step 1: Creating the HTML project

There exist multiple ways for bringing the HTML content of a web page into OpenRefine, however for
this exercise, we are going to use the [ Clipboard ] option of OpenRefine. Proceed by copying the link
of the web page and then paste it into the Clipboard text area of OpenRefine’s initial page.

27

https://docs.openrefine.org/manual/grel
https://docs.openrefine.org/manual/grelfunctions
https://de.wikipedia.org/wiki/Liste_von_Burgen_und_Schl%C3%B6ssern_im_Kanton_Aargau
https://de.wikipedia.org/wiki/Liste_von_Burgen_und_Schl%C3%B6ssern_im_Kanton_Aargau

Figure 25. Using the Clipboard option to create a project in OpenRefine.

Configure your parsing options (leave them as default), name your project, click on [ Create Project ]
and move on to the next step.

Step 2: Bringing the HTML content into OpenRefine

Now you will have one column and one cell simply containing the same link you copied into
OpenRefine.

Figure 26. The single column containing the URL of the webpage we are going to scrape.

Now click on the dropdown of that column and select Edit Column › Add column by fetching
URLs…. Simply give a name to the new column, e.g. html or html_content, leave the expression as
value and click on [ OK ].

28

Figure 27. Adding the whole HTML content in a new column using OpenRefine’s Add column by fetching URL
option.

Now a new column will be created containing the whole pure HTML content of the web page we
selected. We are going to use this column to extract the necessary information we need for the
castles data.

Figure 28. The html_content column containing the full HTML content after adding the column by fetching the
URL.

Step 3: Parsing the HTML and its elements using GREL

Now we are going to use GREL’s HTML parsing functions to parse the HTML and place it into the

29

appropriate columns.

We are going to use a forEach iterative loop from GREL to loop through the appropriate elements and
only extract the data about the castles. In the loop, we are going to use GREL’s HTML parsing
functions and basic CSS selectors logic to select the needed HTML elements.

1. Click on the drop-down of the HTML content column you just created and click on Edit column ›
Add column based on this column….

2. Place the following code into the expression box:

forEach(value.parseHtml().select("table.wikitable tbody tr td:first-child > a"), e,
e.ownText()).join("|").

Figure 29. Using GREL to filter out the data we need from the HTML content.

3. This code loops through the elements specified in the first argument of the forEach loop using
basic CSS selectors, gives a name to each element in the current iteration of the loop in the
second argument (in our case: e) and then performs an action on each loop to that element
(e.ownText()). After the loop is finished, we receive an array of those values, which we join with a |
separator to then split into multiple cells.

4. We are left with a new column that contains a string of all the names of the castles, joined with a
| character.

5. Now we have to split the string we received into multiple cells by separating them with the |
separator (the reason why we did it in the first place). Click on the drop-down of the column you

just created and click on Edit Cells › Split multi-valued cells…. Choose the | separator and click
on [ OK ].

30

Figure 30. Using the Split multi-valued cells option to split the string we created before using GREL.

6. Now your new column should contain one row for each castle (containing the castle name).

7. Now proceed by extracting out the other necessary information castles such as: location, type,
date, notes etc. It follows the same logic as above but you might have to change the CSS selectors
and the action performed with the loop variable (e.g. e.htmlAttr("title") extracts the title
attribute of the link etc).

When you have extracted all the necessary information for the castles, clean up your data set by
removing the HTML content columns and other unnecessary data/columns. You will be left with a
table containing the castles and fortresses of Switzerland, which you scraped from Wikipedia using
OpenRefine.

There are multiple ways you can extract HTML content but as soon as you can receive all the
information you need effectively, all of them are valid.

Figure 31. Castles of Switzerland dataset after scraping the web page, transforming it and cleaning the data in
OpenRefine.

31

There are some GREL functions that are necessary for extracting some of the HTML
information from the HTML content here. You can take a look at them at the section
above about GREL.

Conclusion and Outlook
From the points discussed and explained above, you can see that OpenRefine is a handy tool for
working with data, messy or not. However, it is important to know the right functions when working
with data!

A lot of logical, technical and practical knowledge is required to work with data and turn it into
something useful and meaningful. Hopefully, in the exercises you learned how to deal with messy
data and which functions/tools to choose for different data problems.

5. What we have learned
• Creating a project in OpenRefine.

• Exploring a dataset and transforming it with OpenRefine, using facets and other transform
functions.

• Using OpenRefine to clean/deduplicate and integrate a data set into another one.

• Using OpenRefine for geocoding and for web scraping.

What you haven’t learned here are many other built-in features of OpenRefine - including, for
example, date functions - and more complex analyses, such as statistical data descriptions (mean,
median), and especially what data matching with OpenRefine is. To learn more, check out the many
resources mentioned in the infobox below.

Recommended reading: The book Using OpenRefine by Verborgh & De Wilde (Packt
Publishing Ltd, 2013) is freely availably online. And there are many online tutorials
and videos, like for example the Library Carpentry OpenRefine lesson or the
Introduction video by the University of Idaho Library.

Any more questions? Please contact Stefan Keller (stefan.keller@ost.ch)!

 Freely usable under CC0 1.0: http://creativecommons.org/publicdomain/zero/1.0/

32

https://ruben.verborgh.org/publications/verborgh_packt_2013/
https://ruben.verborgh.org/publications/verborgh_packt_2013/
https://librarycarpentry.org/lc-open-refine/
https://www.youtube.com/watch?v=yTJ6x6zEQmI
mailto:stefan.keller@ost.ch
http://creativecommons.org/publicdomain/zero/1.0/

	Explore, Clean and Integrate Data with OpenRefine
	1. Overview
	Goals and Objectives
	Time Required
	Prerequisites
	Installation of OpenRefine

	2. Introduction
	Structure of this Worksheet
	Data Integration and Data Enrichment
	OpenRefine Basics
	The Graphical User Interface (GUI)
	Projects
	OpenRefine Functionality
	Transforming

	3. Exercises
	Exercise 1: A first OpenRefine Workflow
	Exercise 2: Integrating another Dataset

	4. Enriching Data with Geocoding
	Exercise 3: Geocoding with OpenRefine
	Web scraping
	Exercise 4: Web scraping with OpenRefine
	Conclusion and Outlook

	5. What we have learned

