
Explore, Clean and Integrate Data
with Apache Hop

This is a worksheet with exercises for self-learners and students.

1. Overview

Goals
This worksheet demonstrates how Apache Hop can be used to read, cleanse, filter, merge and store
data.

1



The tasks consist of realistic examples that involve working with heterogeneous data. The aim is to
show how to deal with this data when confronted with problems in this area.

After completing this worksheet, you will be able to:

• Understand and operate Apache Hop.

• Create simple data processing workflows in Apache Hop.

• Merge multiple data sources using Apache Hop.

• Transform column values and save them in a new column.

Time Required
The time required to complete this worksheet is about one hour for the reading part (without
exercises), plus about five quarters of an hour for the exercises part—both depending on your
previous knowledge and skills.

Prerequisites
In order to complete this worksheet, you need the following prerequisites:

• Internet access to download the required software and data.

• Java 17, available at oracle.com.

• Software: Apache Hop, available for Windows, Mac and Linux, and to be installed as described
below.

• Data: File Daten_OpenRefine.zip from OpenSchoolMaps

The following topics may be helpful as preparation for this topic:

• Basic understanding of working with data.

• The worksheet Viewing, cleaning and integrating data with OpenRefine on OpenSchoolMaps.

Installation of Hop
Apache Hop can be downloaded from the Apache Hop website. It is important to note that Java 17 is
required to start the application. Both the source code and the finished programme (binaries) are
offered on the site. Only the binaries are required to run the application. The downloaded file
contains everything you need to start Apache Hop on the most common operating systems.


If you run into problems, there is GitHub Discussions, which contains information
about a lot of the most common issues.

Structure of this Worksheet
• Introduction: Overview of Apache Hop, its functions and areas of application.

2

https://www.oracle.com/java/technologies/javase/jdk17-archive-downloads.html
https://hop.apache.org/download/
https://github.com/apache/hop/discussions/


• User interface (GUI): Description of the GUI and its elements for creating pipelines and
workflows.

• Apache Hop functions: Detailed explanations of various transformation options and data
operations.

• Exercises: Practical tasks on using Apache Hop, including data integration, cleansing and
transformation.

• Conclusion: Summary of concepts learnt and their practical relevance.

• What was learnt: Overview of key lessons learnt from the exercises.

• Appendix: Definitions: An overview over the most important keywords.

2. Apache Hop-Basics
Apache Hop (Hop Orchestration Platform) is an open source data orchestration platform, used for
the creation of data integration processes. The application was developed in Java based on a
platform-independent and modular architecture. This means that the application can be flexibly
extended with plugins for a specific use case.

Hop uses a visual user interface to visualise the processes as clearly as possible. Local files as well as
external databases can be used as a means of reading and saving data. Apache Hop findet
Verwendung bei z.B.:

• Data integration

• Data migration

• Automation of workflows and data processes

• Data cleansing

The Hop Engine is the core of Apache Hop. It is accessible via three clients: Hop GUI, Hop Run and
Hop Server. Hop GUI is the visual development environment in which data teams develop, test,
execute and debug workflows and pipelines. Hop Run is the command line interface (CLI) for
executing workflows and pipelines. Hop Server is a lean web server for executing workflows and
pipelines as web services (HTTP REST API).

The User Interface (GUI)
Apache Hop offers a graphical user interface (GUI) in which the projects are created and displayed. It
consists of a main window that serves as a workspace. The current project and its content are
displayed here.

In Apache Hop, transforms, actions and hops are central concepts for processing and automating
data.

• Transforms are the individual processing steps within a pipeline. They perform tasks such as
loading, converting or saving data.

• Actions are the building blocks of a workflow and control processes, e.g. starting a pipeline,

3



sending a notification or accessing external systems.

• Hops connect transforms and display the data flow in a pipeline. In workflows, you define the
sequence of actions.

These three elements enable a flexible and visual design of data processing and automation
processes in Apache Hop.

Figure 1. Apache Hop GUI.

After a pipeline has been executed, a small icon appears next to the individual transforms, which you
can click on to view the data at this point in the execution.

4



Figure 2. Display of the result after Apache Hop has executed a pipeline.

Pipelines can also be combined into larger constructs using workflows. Here, various pipelines, also
called actions, are connected with hops. In this case, however, these represent the sequential
execution of the individual actions.

Projects
In HOP, projects are the basis for all kinds of tasks.



Environments in Apache Hop are predefined configurations that make it possible to
run projects in different contexts without having to make manual adjustments. They
contain specific settings such as variables, connection details or paths and can be
used for development, test and production environments, for example. For
example, a pipeline in the development environment can work with local files, while
in the production environment it automatically uses a database as a source.
Environments help to make workflows flexible and reusable.

In addition, each project is assigned its own project folder in which the project files are saved. Apache
Hop does not usually change the original data unless it is configured to do so in the pipeline.

3. Apache Hop-Functions
Apache Hop offers a wide range of powerful functions for efficient control of the entire data flow.
Data can be easily imported and exported as well as transformed, merged and validated in complex
workflows. The modular and visual interface enables flexible integration and customization of
processes, which offers decisive advantages, particularly when importing data, combining data
streams and cleansing data records. Some of these functions are explained in more detail below.

5



In- and Output
In Apache Hop there is a large selection of input and output transforms that can be used to read and
write data. A few selected transforms are described below.

Excel Input

Excel files can be integrated directly into a pipeline as a data source with the Microsoft Excel Input.

Figure 3. The parameter menu of the Excel Input Transform

In the Files › Browse… tab, the file must first be referenced and then added to the list of Selected
Files by clicking on [ Add ].

The corresponding sheets to be read can then be selected in the Sheets › List of sheets tab under

[ Get sheetnames(s)… ]. Finally, the header can be read in in the Fields › Define fields schema: tab
via [ Get fields from header row… ]. If desired, the data types of the individual columns can now be
customised.

Excel Writer

The Microsoft Excel Writer can be used to save a data flow as an Excel file (.xlsx, .xls). To Export
the data as a Excel file you’ll have to reference a saving location.

Transforms
Apache Hop is particularly powerful when it comes to transforming data. Thanks to the visual
representation, pipelines can be efficiently compiled and analysed. As Hop has a flexible structure, it
can also be easily integrated into existing processes and infrastructures. Some of the available
transformations are listed and explained below.

6



Merging data records from different sources
Apache Hop offers various functions for merging different data. Depending on what is to be
achieved, different transforms can be used.

Append Streams Transform

The Append Streams transform can be used to append one data flow to another. The parameters refer
to Tail and Head. The tail is placed at the end of the head. The schema, i.e. the columns of the tables
and their data types, of the two sources must be identical, otherwise an error will occur.

Merge Join Transform

The Merge Join transform in Apache Hop enables two data streams to be linked using a common key.
A join type such as INNER, LEFT OUTER or FULL OUTER is selected, similar to SQL joins. It is important that
the input data is sorted in advance, as Merge Join does not perform automatic sorting. After the join,
the combined data records are processed as a single data stream.

Validating and Deduplication

Sorting Transform

The Sorting Transform sorts a data flow alphabetically/numerically in ascending or descending order.
The corresponding columns must be selected in the parameters. Several columns can also be
selected. In this case, the order in which the columns are specified is decisive.

Unique Rows Transform

Duplicates can be removed with the Unqiue Rows Transform. Columns relevant for checking can be
defined in the parameters. However, this transform only works with sorted data flows. Accordingly, a
Sorting transform must be applied beforehand.

Value Mapper Transform
The Value Mapper Transform is used to convert values within a data stream. It makes it possible to
replace certain input values with defined target values.

To use it, add a Value Mapper transform in a pipeline. Open the parameters and enter the original
value under Source value and the desired target value under Target value. After saving, the defined
values are automatically replaced when running through the pipeline. This is particularly useful for
data cleansing or the standardisation of values.

Exercise 1: First Apache hop pipeline
In this exercise, you will build a simple pipeline with Apache Hop. An Excel file is read in, filtered, the

7



data is cleansed and finally saved again.

Data

For this excersise address_list_original.xlsx is used. This is part of the zip archive
Daten_OpenRefine.zip, which you can download from OpenSchoolMaps (same section as this
worksheet).

Step 1: Create a Project

To create a project - the actual workspace in which you work with the data - you must do the
following:

1. start Apache Hop on your local machine.

2. click on [ Add a new Project ] in the top bar.

3. in the new window you must give the project a name and define a Home folder. You can confirm
the entry with [ OK ].

4. a new window then appears in which you can define enviorment variables. You can click these
away with [ No ].

Figure 4. New Projects.

Step 2: Load and Validate Data

Filter out all Customers that are not from Zurich, so the dataset only includes customers from Zurich.

1. load the data from the file address_list_original.xlsx with the help of Microsoft Excel Input.

2. apply the transform Filter rows to the column Canton to filter only customers who live in the

8



canton ZH.

3. use the separate transform Standardize phone number to add the country code and bring the
phone number into a standardised format.


Standardise Phone Number is a transform that is exemplary for transforms added by
plugins. Alternatively, you can also use a String Operation to convert the data into
the desired form.

Step 3: Export Data

Once you have completed the above tasks, you can add an export to the pipeline. Use the Microsoft
Excel Writer for this. In the options, select xlsx [Excel 2007 and above] as the format and choose a
suitable file name.

Exercise 2: Integrating another data set
In this exercise, you integrate a data record into a predefined target data record. Some column
names and structures are changed, otherwise the data set remains unchanged. Such scenarios are
common in practice, as data from various sources have to be merged into a comprehensive data set.
With Apache Hop, you can use various techniques - such as mapping attributes, merging and
splitting fields, and deduplication. and deduplication - to successfully standardise the different data
streams.

Data

The data from the files address_list_original.xlsx & address_list_scrambled.xlsx are used for this
task.

Step 1: Create a Project

Once you have downloaded both Excel files, create a new pipeline by clicking on the [ + ] in the top
bar and selecting [ Pipeline ].

Step 2: Integrate the Data

To import both data into one pipeline, two separate Microsoft Excel inputs must be created.
Reference one Excel file for each transform. You will then first convert the data into a standardised
format, before you merge the two data flows.

9



Figure 5. Parameters for both Excel inputs

Step 2.1 Merging and standardising the columns from both files

First of all, you need to look at the columns in both files and find out which columns belong together.

Once you have found matching columns, they must first be matched using Select Values and then
merged using Append Streams. Append Streams only works with data that has an identical structure.
As soon as the tables have been merged, they can be processed further.

In the parameters for Select Values you can rename the column under rename.

You can also use Remove to remove columns such as CustID that only occur in one table.

Figure 6. Select Values parameters of both streams.

If both streams generate an identical schema, they can be merged with Append Streams. You must
define head and tail in the parameters. However, the order does not play a role in this example.


If you now execute the pipeline and an error occurs, it may well be that the two
streams do not yet have an identical schema.

10



Figure 7. Both streams sucessfully merged.

Step 2.2 Deduplication of the data

The next step is to deduplicate the data. Some data from the second file is also present in the first
file, which means that these are duplicates, which you need to remove and only keep one of the
entries. There is also other data in the second file that does not exist in the first file (i.e. no
duplicates), so you do not need to remove them.

In order for a stream to be cleaned up using Unique Rows, it must first be sorted. You can use the Sort
transform for sorting.

Figure 8. Sorting according to the column ‘Firstname’.


It is important that all rows are sorted according to the columns that are used to
identify the duplicate rows, are sorted. However, it does not matter whether this is
in ascending or descending order.

For a data record to be considered a duplicate, the following condition must be met: If the first name,

11



surname and date of birth are identical, it is the same person, i.e. a duplicate.

For this we can use the Unique Rows Transform, which removes duplicates. If no specific columns are
specified in the parameters, all columns are checked.

Figure 9. Deduplicate using the Unique Rows Transform.

Step 3: Finalisation

The telephone numbers are stored in different formats in the ‘Phone’ column. Apply what you have
learnt from task 1. However, make sure that international telephone numbers also have the correct
dialling code.

 Use other columns for help if necessary.

Once this last task has been completed, the source data is successfully integrated, validated and
deduplicated in the target data set.

Step 4: Exporting the data

Add an Export tranform to your pipeline to export the files in MS Excel 2007+ (.xslx) format and finish
this exercise. complete this exercise.

Exercise 3: Using Value Mapper Transform
The aim of this exercise is to add another column based on the existing data. In this case, the Sex
/Gender column is to be used to create a new column called Salutation, which contains the
corresponding salutation.

12



Data

For this task, you can either use the pipeline from task 2 or use address_list_original.xlsx.

Step 1: Create project and import data (optional)

If you are working with a new pipeline, you must first create a new pipeline via the [ + ] and read the
data from the Excel file using an Excel Reader,

Step 2: Create Value Mapper Transform

Use a Value-Mapper transform to create a new column called Salutation, which inserts M → Male or F
→ Female depending on the gender specified. is specified, which inserts M → Mr or F → Female.

Step 3: Export data

To complete this task, the data must be exported to the format MS Excel 2007+ (.xslx) using an Excel
Writer transform. format.

4. Conclusion
Based on the points discussed, it was shown that Apache Hop is a powerful tool for processing and
preparing data. data. The intuitive and visual environment makes it easy to visualise and understand
complex processes.

Working with data and transforming it into something meaningful and useful requires a lot of logical,
technical and practical knowledge. practical knowledge is required. In the exercises, you will
hopefully have learnt how to deal with confusing data and which functions and tools to choose for
different data problems. tools you can choose for different data problems.

5. Things learned
• Create a project in Apache Hop.

• Transforming a dataset with Apache Hop, using different transforms.

• Using Apache Hop to clean/duplicate and integrate one dataset into another.

• Use a Value Mapper transform to create a new column.

6. Appendix: Definitions

Tools
Apache Hop offers several tools for modelling, executing and managing data integration processes.
The most important are:

• Hop Gui: Main user interface for graphically creating pipelines and workflows. When starting out,

13



the only tool required.

• Hop Run: Command line tool for executing workflows and pipelines.

• Hop Conf: Configuration tool for managing projects and environments.

• Hop Server: Lightweight web server for remote execution of pipelines and workflows.

• as well as other tools, such as Hop Encrypt (passwords), Hop Search (metadata objects in
projects), Hop Import (for Kettle)

Workflow
A structured sequence of one or more pipelines and actions. Is used to control the data flow, i.e.
for flow and error logic, time control and conditional executions. Used for data flow management.
(Not used in this exercise).

Pipeline
Structured sequence for data processing, consisting of individual transforms, connected by hops.
Used for the actual data processing: Loading, transforming and writing data. Can be parallelised
and runs data set-oriented.

Transform
A processing step within a pipeline (e.g. reading, filtering, converting data). Performs operations
such as filtering, renaming, joining or converting. Works on tabular data and changes schema or
format if necessary. Part of data processing.

Hop (within pipelines)
Connects Transforms in pipelines, Actions in workflows and controls the flow of data from one step
to the next.

Action
An operation within a workflow - e.g. to start a pipeline or send an email. Performs tasks such as
starting a pipeline, sending an email or waiting for a file. Returns boolean result values
(success/failure). Does no own data processing. (Not used in this exercise).

Project
A logical collection of pipelines, workflows, metadata and configurations. Used to structure hop
content. Supports project-specific configurations such as parameters (declarative variables, can
also have default values) or simple variables (key-value pairs that are used at runtime).

14



Environment
A collection of configuration values that are applied to a project at runtime. Allows pipelines and
workflows to be executed in different contexts (e.g. Dev, Test, Prod).

Metadata
Reusable objects such as database connections, file formats, table descriptions or user-defined
values. Are managed centrally and referenced in pipelines/workflows.

File Definition
A metadata structure that describes how a structured file (e.g. CSV) should be read or written (e.g.
separator, header, character set).

Execution Engine
Apache Hop supports multiple execution engines, e.g. the local engine or Apache Beam for scalable
and distributed execution.

Hop Web
(future) planned web interface for control and modelling. Currently not included in the stable version,
but under development.

Metadata injection
Dynamic insertion of metadata into pipelines to create flexible, parameterisable processes - e.g.
based on Excel or database definitions.

Row
Basic unit of data processing in a pipeline. A row can consist of any number of fields (e.g. attributes
such as customer_id, amount, timestamp).

Any more questions? Please contact Stefan Keller (stefan.keller@ost.ch)!

 Freely usable under CC0 1.0: http://creativecommons.org/publicdomain/zero/1.0/

15

mailto:stefan.keller@ost.ch
http://creativecommons.org/publicdomain/zero/1.0/

	Explore, Clean and Integrate Data with Apache Hop
	1. Overview
	Goals
	Time Required
	Prerequisites
	Installation of Hop
	Structure of this Worksheet

	2. Apache Hop-Basics
	The User Interface (GUI)
	Projects

	3. Apache Hop-Functions
	In- and Output
	Transforms
	Merging data records from different sources
	Validating and Deduplication
	Value Mapper Transform
	Exercise 1: First Apache hop pipeline
	Exercise 2: Integrating another data set
	Exercise 3: Using Value Mapper Transform

	4. Conclusion
	5. Things learned
	6. Appendix: Definitions
	Tools
	Workflow
	Pipeline
	Transform
	Hop (within pipelines)
	Action
	Project
	Environment
	Metadata
	File Definition
	Execution Engine
	Hop Web
	Metadata injection
	Row


