OpenSchoolMaps: Abfrage und
Visualisierung von OSM-Daten mit
Python

OpenSchoolMaps.ch — Freie Lernmaterialien zu freien Geodaten und Karten

Ein Arbeitsblatt mit Ubungen fiir Selbstlernende und Studierende.

o Es gibt ein offentliches Repository auf GitLab, das mit diesem Dokument verknulpft
ist und Anschauungsmaterial sowie eine Ubung enthlt.

Uberblick

Dieses Arbeitsblatt ist eine Einfuhrung in OpenStreetMap (einschliesslich Overpass-API und der
Overpass-Turbo-GUI). Weitere Informationen befinden sich auf OpenSchoolMaps.

Lernziele

Dieses Dokument bietet Losungen und Tipps zu folgenden Fragen:

1. Wie kann man Daten aus OpenStreetMap (OSM) extrahieren und geovisualisieren?

2. Wie kann man OSM in einer interaktiven Karte darstellen?

Benotigte Zeit

Die Bearbeitung dieses Arbeitsblatts dauert ungefahr 40 Minuten, einschliesslich der Ersteinrichtung.
Die tatsachliche Dauer hangt jedoch von den individuellen Vorkenntnissen ab.

Voraussetzungen

Das nachfolgend bendtigte Jupyter Notebook kann auf drei Wegen initialisiert werden. Wir
empfehlen, dieses Uber Binder zu starten. Der Link dazu befindet sich im offentlichen GitLab-
Repository. Alternativ befindet sich dort auch eine Anleitung, Jupyter Notebook Uber Docker zu
starten. Wer es vorzieht, Jupyter Notebook mit Anaconda zu installieren, findet Links dazu im Kapitel
Bibliografie und Ressourcen.

EinfuUhrung

https://gitlab.com/geometalab/blogposts-tutorials-presentations/accessing-and-visualizing-openstreetmap-data-using-python
https://gitlab.com/geometalab/blogposts-tutorials-presentations/accessing-and-visualizing-openstreetmap-data-using-python
https://gitlab.com/geometalab/blogposts-tutorials-presentations/accessing-and-visualizing-openstreetmap-data-using-python
https://openstreetmap.org
https://openschoolmaps.ch
https://gitlab.com/geometalab/blogposts-tutorials-presentations/accessing-and-visualizing-openstreetmap-data-using-python
https://gitlab.com/geometalab/blogposts-tutorials-presentations/accessing-and-visualizing-openstreetmap-data-using-python

Ein Beispiel - Outdoor-Tischtennistische!

Als Beispiel verwenden wir Outdoor-Tischtennistische aus der Geschichte “Zurich ist der coolste Ort
in der Schweiz zum Tischtennisspielen (laut OpenStreetMap @)"

wTTHITT

Abbildung 1. Tischtennis im Freien. (Quelle: www.concretesports.co.uk)

Was ist OpenStreetMap? - Eine kurze Einfuhrung

OpenStreetMap (OSM) ist eine frei nutzbare, bearbeitbare Karte der gesamten Welt - ein
gemeinschaftliches Projekt fir Geodaten. Es ist die grosste Community im Bereich Vektor-Geodaten
und nach Wikimedia die zweitgrosste Community insgesamt. Bei den Basiskarten und Points-of-
Interest (POI) ist OSM mit Google Maps vergleichbar.

OSM umfasst Basiskarten, POIs, Routing und Geokodierung (z.B. Adressen).

Die Datenstruktur von OSM basiert auf Schlissel-Wert-Paaren, sogenannten Tags (“NoSQL Schema”),
und verwendet ein topologisches Vektor-Geometrie-Modell bestehend aus Nodes, Ways und Relations
(siehe die Ubersicht und weiterflihrenden Unterseiten dazu im OSM-Wiki):

* Node: osm_id, lat/lon-Koordinaten, Reihe von Tags.

* Way: osm_id, Liste von Node osm_ids (FremdschlUssel), Reihe von Tags.

Diese OSM-Datenstruktur unterscheidet sich stark von traditionellen Geoinformationssystemen (GIS)
mit Ebenen und von relationalen Datenbanken mit Tabellen.

* Es gibt Punkte, Linien und Polygone. Polygone sind entweder geschlossene Ways oder aber
Relations mit einem entsprechenden Tag 'area’.

* Tags sind Attribute, die fur jedes Objekt der realen Welt variieren kénnen.

Details werden schrittweise den Objekten (Entitdten) hinzugeflugt. Es gibt keine vordefinierte
konzeptionelle Modellierung einer Entitat (bzw. Entitatsmenge) wie in GIS.

Beispiele:

https://wiki.openstreetmap.org/wiki/Elements
https://wiki.openstreetmap.org/wiki/Main_Page

* Gebadude: Kbnnen — nebst der Geometrie — aus nur einem Tag building=yes bestehen oder aber
ein Restaurant sein mit dutzenden Tags.

* Kirche: Kann ein Gebaude sein, ein historischer Ort, ein Gottesdienstort usw.

+ Bad: Kann ein privater Pool, ein 6ffentliches Schwimmbad, ein Park mit Badeeinrichtungen, ein
Wasserpark usw. sein.

Beispiel fiir eine Overpass-Abfrage, die versucht, alle Badeobjekte in OSM zu erfassen: https://osm.li/COe

[out:json];
area["name"="Schweiz/Suisse/Svizzera/Svizra"];

(
nwr[sport=swimming][name](area);
nwr[leisure=swimming_area][name];
nwr[leisure=water_park];
nwr[amenity=public_bath];

)i

out center;

Extrahieren, Verarbeiten und Geovisualisieren von
OSM-Daten auf einer Karte

Wir wollen nun bestimmte Daten aus OpenStreetMap extrahieren und auf einer Karte ausgeben:
Visualisieren wir alle Tischtennistische in Zurich. Dazu suchen wir zuerst den Tag unserer Daten
heraus.

1. Laden von OSM-Daten

2. Verarbeitung und Speicherung als GeoJSON-Datei

3. Geovisualisierung als interaktive Karte mit einer Basiskarte

Zunachst wird der Tag fur Tischtennistische bestimmt: Es ist sport=table_tennis. Dies lasst sich mit
der Overpass-Turbo-GUI Uberprufen: https://osm.li/VxG

/*

Table Tennis Tables
*/

[out:json];

node["sport"="table_tennis"]({{bbox}});
out body; >; out skel qt;

Zudem bendtigen wir die Bounding Box des Gebiets der Stadt Zurich.

Eine Bounding Box ist ein rechteckiger Bereich, der ein Gebiet umgibt. bboxfinder
oder das BBOX Webtool sind Werkzeuge, um die Koordinaten von gewilnschten
Orten zu ermitteln.

https://osm.li/COe
https://wiki.openstreetmap.org/wiki/Tag:sport=table_tennis
https://wiki.openstreetmap.org/wiki/Tag:sport=table_tennis
https://osm.li/VxG
http://bboxfinder.com
https://ifs.pages.ost.ch/geometalab/bbox-webtool/

Interaktive Karte in einem Jupyter Notebook

Jupyter Notebooks sind webbasierte interaktive Softwareumgebungen, mit denen Notebook-
Dokumente erstellt werden kénnen. Ein Jupyter Notebook tragt die Dateiendung .ipynb und enthalt
eine Liste von Eingabe- und Ausgabezellen, die Code, Text und Diagramme (z.B. Karten) enthalten
kénnen.

Veroffentlichung der Karte im Web

Die mit den Bibliotheken Folium oder Plotly erstellten Karten kénnen auch im Web verdéffentlicht
werden.

Dazu generiert man mit der “Export’-Funktion der jeweiligen Bibliothek eine HTML5-Datei
(einschliesslich JavaScript und CSS). Das Veroéffentlichen geht ohne Backend, d.h. man muss nur die
generierten Dateien irgendwo hosten.

Wir werden Thnen nun Anwendungsbeispiele im Jupyter Notebook zeigen. Folgen Sie dazu dem Link
zum GitLab-Repository und lesen Sie dort das README.md.

Fazit und Ausblick

Wir benutzten dieses Python-Skript, um Daten von Overpass zu laden und auf einer Karte
auszugeben.

import plotly.express as px

import geopandas as gpd

from collections import namedtuple

from osm2geojson import overpass_call, json2geojson

BBox mit den Komponenten in der Reihenfolge, die von Overpass erwartet wird
Bbox = namedtuple("Bbox", ["south", "west", "north", "east"])
Tag = namedtuple("Tag", ["key", "value"])

Deklaration der EPSG-Codes fiir verschiedene Koordinatenreferenzsysteme (crs)
WGS84 = 4326
webMercator = 3857

def load_osm_from_overpass(bbox, tag, crs=f"epsg:{WGS84}") -> gpd.GeoDataFrame:
geojson = load_osm_from_overpass_geojson(bbox, tag)
return gpd.GeoDataFrame.from_features(geojson, crs=crs)

def load_osm_from_overpass_geojson(bbox, tag):
query = fllllll
[out:json];
nwr["{tag.key}"="{tag.value}"]({bbox.south},{bbox.west}, {bbox.north},{bbox.east});

https://gitlab.com/geometalab/blogposts-tutorials-presentations/accessing-and-visualizing-openstreetmap-data-using-python
https://gitlab.com/geometalab/blogposts-tutorials-presentations/accessing-and-visualizing-openstreetmap-data-using-python

out body;

>;

out skel qt;

response = overpass_call(query)
return json2geojson(response)

def plot_gdf_on_map(gdf, title=""):
fig = px.scatter_map(
gdf,
lat=gdf.geometry.y,
lon=gdf.geometry.x,
color_discrete_sequence=["fuchsia"],
height=500,
zoom=11,
)
fig.update_layout(title=title, map_style="open-street-map")
fig.update_layout(margin={"r": @, "1": @, "b": 0})
return fig
def main():
Beispiel: Tischtennistische in Zirich
tag = Tag(key="sport", value="table_tennis")
bbox_zurich = Bbox(west=8.471668, south=47.348834, east=8.600454, north=47.434379)
table_tennis_gdf = load_osm_from_overpass(bbox_zurich, tag)
Konvertieren aller Geometrien zu Punkten
(siehe https://gis.stackexchange.com/questions/302430/polygon-to-point-in-
geopandas)
Um Berechnungsfehler zu minimieren, konvertieren wir zu EPSG:3857 (webMercator)
und danach wieder zuriick zu EPSG:4326 (WGS84)
gdf = table_tennis_gdf.to_crs(epsg=webMercator)
gdf.geometry = gdf.geometry.centroid
gdf = gdf.to_crs(epsg=WGS84)
fig = plot_gdf_on_map(gdf, title="Zurich Table Tennis")
Falls kein Fenster erscheint, die folgende Zeile auskommentieren
und die Datei standalone_map.html im Browser &ffnen:
fig.write_html("standalone_map.html")
fig.show()
if _name__ =="_ main__":
main()

Listing 1: Das Python-Skript, welches alle Tischtennistische in Ziirich auf einer Karte anzeigt.

Die Aufgabe war es, das Skript so zu andern, dass alle Trinkbrunnen in Rapperswil-Jona angezeigt
werden. Die Lésungen dazu befinden sich in diesem Zip, auch auffindbar in der Tutorialtbersicht.

Das Ergebnis visualisiert mit Plotly

https://openschoolmaps.ch/lehrmittel/zips/Loesungen_abfrage_und_visualisierung_von_osm-daten.zip
https://openschoolmaps.ch/pages/materialien.html#abfragen-und-visualisieren-von-osm-daten-mit-python

= 'E__'t *e

z ‘f-l._"|___-‘1 . _L

Hardwald

i .H - - " ’
p "wallisgllen

.

. ;
- Sy
— L f ‘ % -
—3z =L
IWollishofen +1 ~. »

Abbildung 2. Karte der Tischtennistische in Zirich. Screenshot einer interaktiven Applikation, erstellt mit Python
und Plotly. (Quelle: Eigene Arbeit)

Neben Plotly (und Folium) ist auch Matplotlib weit verbreitet. Fir Python-
Programmierer sind ausserdem drei weitere Moglichkeiten zu erwdhnen, mit denen
man Karten erstellen kann:

Streamlit + Plotly/MapLibre/Leafmap

In Streamlit kann man Plotly-Karten direkt anzeigen (st.plotly_chart()) und
MapLibre-/Leafmap-Karten Uber eine Komponente bzw. to_streamlit() nahtlos
integrieren.

Python + MapLibre

Wenn mehr Kontrolle tGber Styles benétigt wird, kann MapLibre GL JS Uber eine
Streamlit-Komponente (HTML/JS) aus Python heraus eingebettet werden, um
basierend auf Vektor-Tiles performante WebGL-Karten zu erstellen.

Python + Leafmap

Leafmap rendert Karten ohne eigenes JavaScript, bietet eine High-Level-Python-
API und ist zudem GeoPandas-freundlich.

Bibliografie und Ressourcen

Installation der Jupyter-Software unter Windows:

1. Anaconda — software distribution tool

https://docs.anaconda.com/anaconda/install/windows/

2. Jupyter-Installation (weitere Infos: https://mas-dse.github.io/startup/anaconda-windows-install/ ,
https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html)

Jupyter Notebooks / Anleitungen:

* Verschiedene Open-Source-Tools zur Geodatenvisualisierung in Jupyter Notebooks (Python):
https://medium.com/@bartomolina/geospatial-data-visualization-in-jupyter-notebooks-
ffa79e4ba7f8

* OSMnx ist eine Python-Bibliothek zum einfachen Herunterladen und Visualisieren von
OpenStreetMap-Daten, deren Github-Repository Tutorials und Funktionsdemonstrationen
beinhaltet.

* “A Guide: Turning OpenStreetMap Location Data into ML Features—How to pull shops,
restaurants, public transport modes and other local amenities into your ML models.” von Daniel L
J Thomas, 17. September 2020. https://towardsdatascience.com/a-guide-turning-openstreetmap-
location-data-into-ml-features-e687b66db210 (Hinweis: Beinhaltet OSMnx, Overpass, K-D-Tree
zur Distanzberechnung)

Softwarebibliotheken und Frameworks fir OSM und Python:

* Python Library “OSMnx” (Liniennetzwerke, POI): https://osmnx.readthedocs.io/en/stable/
osmnx.html#module-osmnx.pois and https://autogis-site.readthedocs.io/en/latest/lessons/
lesson-6/retrieve-data-from-openstreetmap.html

* Weitere Python Libraries:
> osm2geojson: https://github.com/aspectumapp/osm2geojson
> OverPy: https://github.com/DinoTools/python-overpy
* “Awesome OpenStreetMap” — Eine kuratierte Liste von' allem’ rund um OpenStreetMap (Noch
nicht vollstédndig): https://github.com/osmlab/awesome-openstreetmap#python

Overpass API und GUI:

+ Overpass APL https://medium.com/data-science/loading-data-from-openstreetmap-with-python-
and-the-overpass-api-513882a27fd0

* Nutzung der Overpass API: https://gis.stackexchange.com/questions/203300/how-to-download-
all-osm-data-within-a-boundingbox-with-overpass

* Beispiel fur eine typische Overpass-Abfrage:

[out:json];
area["IS03166-2"="CH-ZH"];
(
nwr[sport="table_tennis"](area);
nwr[leisure="table_tennis_table"];
)i

out center;

https://jupyter.org/install
https://mas-dse.github.io/startup/anaconda-windows-install/
https://jupyterlab.readthedocs.io/en/stable/getting_started/installation.html
https://medium.com/@bartomolina/geospatial-data-visualization-in-jupyter-notebooks-ffa79e4ba7f8
https://medium.com/@bartomolina/geospatial-data-visualization-in-jupyter-notebooks-ffa79e4ba7f8
https://osmnx.readthedocs.io/en/stable/
https://towardsdatascience.com/a-guide-turning-openstreetmap-location-data-into-ml-features-e687b66db210
https://towardsdatascience.com/a-guide-turning-openstreetmap-location-data-into-ml-features-e687b66db210
https://osmnx.readthedocs.io/en/stable/osmnx.html#module-osmnx.pois
https://osmnx.readthedocs.io/en/stable/osmnx.html#module-osmnx.pois
https://autogis-site.readthedocs.io/en/latest/lessons/lesson-6/retrieve-data-from-openstreetmap.html
https://autogis-site.readthedocs.io/en/latest/lessons/lesson-6/retrieve-data-from-openstreetmap.html
https://github.com/aspectumapp/osm2geojson
https://github.com/DinoTools/python-overpy
https://github.com/osmlab/awesome-openstreetmap#python
https://medium.com/data-science/loading-data-from-openstreetmap-with-python-and-the-overpass-api-513882a27fd0
https://medium.com/data-science/loading-data-from-openstreetmap-with-python-and-the-overpass-api-513882a27fd0
https://gis.stackexchange.com/questions/203300/how-to-download-all-osm-data-within-a-boundingbox-with-overpass
https://gis.stackexchange.com/questions/203300/how-to-download-all-osm-data-within-a-boundingbox-with-overpass

Noch Fragen? Wenden Sie sich an OpenStreetMap Schweiz oder Stefan Keller!

o Frei verwendbar unter CCO 1.0

mailto:info@osm.ch
mailto:stefan.keller@ost.ch
http://creativecommons.org/publicdomain/zero/1.0/

	OpenSchoolMaps: Abfrage und Visualisierung von OSM-Daten mit Python

